
1 TechExcel DevTest

Product testing is more complicated, labor-intensive, and time-consuming
than ever before. Businesses are demanding greater openness, transparency,
and scalability from their software investments—they looking for versatile
solutions that enable them connect users and resources worldwide while
leveraging their existing investments.

As a result, contemporary business applications run on many different
platforms and in many different environments, support integration with
emerging technologies and legacy systems, and feature add-on modules that
support every imaginable business process. All this versatility has multiplied
the number of variables that may affect the performance application making
the task of testing software more complicated and time-consuming than over
before.

But the same forces that drive the demand for these applications also require
that these products be delivered to market as quickly as possible—if not
sooner. QA organizations are under increasing pressure to complete their
testing in ever-shorter time frames. And, as if this were not enough, these
challenges are compounded by hectic development schedules that introduce
problems all their own—new features may suddenly appear or disappear,
the design and functionality of product features often change to meet the
demands of the marketplace or to accommodate tight schedules.

To meet these challenges, QA organizations are pursuing several different
strategies —beginning their test planning earlier in the development life cycle,
leveraging the results of previous test efforts, improving the management of
testing data, and reusing existing test coverage. And increasingly, many testing
organizations are abandoning outmoded paper-based systems and turning
to software test management solutions to organize, plan, and analyze their
testing efforts.

2 TechExcel DevTest

Why Test
Management?

In the past, testing organizations could rely on paper-based
solutions to plan, design, manage, and track their testing
projects. Older technologies did not require the same
degree of planning and organization as do contemporary
software suites—they lacked the portability, the versatility,
and extensibility.

But even with simple applications, paper-based systems
are merely adequate. The lack of organization, poor
planning, and inefficient communication that are inherit
in paper-based systems regularly jeopardize delivery
schedules and, ultimately, jeopardize the quality of the
product itself.

In a paper-based system all testing activities are recorded
and tracked in static lists, tables, outlines, and matrices
created in word processing documents or spreadsheets.
Paper-based solutions are difficult to maintain, update,
and track. As a result, testing strategies are necessarily
straight forward and limited, because testing teams are
straitjacketed from the very start of the process.

Poor or inaccessible documentation and inadequate
channels for communication make it difficult for QA
organizations to adjust to sudden changes in product
design. Test plans are frequently based on out-dated
requirements documents, and this can lead to test cases that
do not adequately test product features and functionality.

Understandably, test planning is frequently left to late in
the development life cycle when the product approaches
some kind of stasis. But delaying test planning creates a
whole new set of hurdles. Time pressures mean that QA
organizations must focus on testing the application at hand
and have little time to plan ahead for future release cycles.
Hastily created test cases are generally not reusable.

Test planning efficiency can be improved when the test
planners can base future test assignments on previous
results and an analysis or test or defect data. But tight

schedules mean their is little time for reflection or future
planning. And even if there were time, traditional models
make it difficult to review previous test data or defect data
because it is often inaccessible—lost or misplaced in a
stack of paper, buried in someone’s inbox, or stored away
somewhere in different files or applications.

Why test management? Because test management solutions
enable businesses to work more intelligently and efficiently.
Test management solutions provide following benefits:

•	 Manage knowledge and facilitate communication:
A test management solution provides testers with a
centralized and secure tool through which they may
review control documents and research previously
reported bugs. Knowledge collected by the testing
group is accessible to all project members at all times.

•	 Enforce the standardization of test cases: A test
management solution enables the testing group to
define the data they wish to track and to design a
standard interface for collecting and tracking that
data. Standards increase efficiency.

•	 Promote the creation of reusable test cases: A test
management solution makes it easy for testing groups
to save, manage, and reuse their most effective test
cases.

•	 Leverage previous results in test planning: A test
management solution enables testing groups to plan
future test assignments based on the analysis previous
test results. Instant access to summary reports enables
test planner to improve test efficiency.

•	 Respond to issues quicker: A test management
solution provides real-time access to all testing data
so that testing groups can immediately respond to
critical test blockers or and other issues. The faster the
team is able to address the critical issues the sooner
the test team may resume their testing.

•	 Make information accessible: A test management
solution provides a test planners with a complete
picture of their testing project so that they better
manage their project and they can make the
necessary adjustments to meet testing objectives and
deadlines.

3 TechExcel DevTest

Knowledge
Management

One key factor to meeting the demands of contemporary
software development is to ensure that all project
stakeholders—management, developers, and testers— have
access to the most up-todate control documents and may
effectively communicate with others both within and outside
their organizations and teams—in short, everyone must be
on the same page at all times.

To address this issue, TechExcel DevTest takes a “knowledge-
centric” approach to test management that places the
collection, management, and distribution of information at
the core of all development and quality assurance processes.

Knowledge management enables all stakeholders to access,
manage, and share information so that QA may make
informed decisions throughout the testing process, leverage
the information collected and generated by development,
and learn from their past successes and failures so that they
may implement more efficient and intelligent processes.

Key components of the DevTest approach to knowledge
management include a centralized knowledge base, instant
access to quality reports, and tools for communicating
information relevant to individual test cases and the project
as a whole.

Managing Project Knowledge

In DevTest, all testers may access a centralized repository
of information from within the DevTest client. The DevTest
knowledge view, powered by TechExcel KnowledgeWise,
provides development and QA organizations with a tool
for collecting and organizing the ideas that drive product
development and testing. All ideas, both formal and
informal are collected and managed in the same, centralized
knowledge base.

TechExcel KnowledgeWise is a key component in the
TechExcel DevSuite of application life cycle management
products. KnowledgeWise provides project managers,
designers, developers, testing groups, and sales and
marketing departments with a secure repository for
all project documents— the project plan, business

requirements, functional and technical specifications, risk
management documents, and corporate standards and
guidelines may be managed in one knowledge base that is
shared by the entire business.

•	 A centralized knowledge base increases efficiency,
prevents the loss of information, helps to reduce
system and maintenance costs, and facilitates
collaboration by distributed teams.

•	 Access to knowledge items is protected by privilege-
based access controls. The ability of project members
to view, edit, lock, check out, and check in protected
files is defined by their role in the project.

•	 Built-in version control tools ensure that all project
development and testing teams (no matter where they
are in world) always have access to the most up-to-
date documents.

Leveraging Control Documents

A common knowledge base ensures that the QA
organization always has access to the latest project control
documents —business requirements, functional and
technical specifications— and enables them to leverage this
information to plan and organize their test plans early in the
development processes.

In DevTest, QA organizations may access project control
documents as soon as those documents are uploaded to the
knowledge base—at the same time they are available to the
developers themselves. Access enables the QA organization
to jump-start test planning and develop testing strategies
and test cases in parallel with the implementation of the
designs.

Using these control documents, testing groups may
estimate the scope of the project, allocate resources, and
plan appropriate strategies for testing the functionality and
performance of those features.

Testing groups need not wait for all of the control
documents to be approved before they begin their test
planning. They can create test cases and build test planning
structures in a piecemeal fashion as the designed product
is realized in the knowledge base. With each new control
document that is added to the knowledge base they can
create appropriate test cases.

4 TechExcel DevTest

Ideally, project control documents are complete and
approved at the beginning of the test planning stage.
However, the specifications and designs that are approved
at the beginning of the development process may be
sketchy, inadequate, or change significantly over time
due to changes in the marketplace, technical problems,
or time constraints. DevTest provides testing groups with
the flexibility they need to adjust to changes in design or
schedule.

QA organizations may take an evolutionary approach to
test planning. By organizing their test cases by product
features, they can readily adjust to changes in product
design or changes to the schedule. They may create
appropriate structures and test cases as the requirements
and specifications are completed and update the list to
accommodate changes to the application. DevTest planning
structures and test cases may be easily edited and updated
so that QA organizations need not pay the penalty for
changes in design.

Facilitating Task-level Communication

By placing knowledge management at the core of all
development processes, DevTest facilitates all project-level
and task-level communication.
Just as the centralized knowledge base ensures that all
stakeholders have access to project information, the
complete history of every test case and all background
information is always right at hand. All communication is
recorded and tracked with the test case so that test task
itself is the vehicle for communication. Key information
cannot be lost in e-mail exchanges or buried in user inboxes.

Good notes from the prior testing enables test team
members to pick up testing where others have left off. Any
testing team member may pick up the work of another
tester, and with a little research understand the test in its
entirety.

Every test case may be directly linked to supporting
materials—test plans, business requirements, schedules, and
so on— that enable testers to run successful tests. Testers
may read all business requirements and specifications
and compare product functionality against those control
documents.

Test Planning
and
Organization

Test planning begins with the identification and definition of
product features in a feature list: a simple list of the visible
functions, subfunctions, commands, menu choices, reports,
and so on that need to be tested. Whereas a feature list
begins as simple list of all of the product features that need
to be tested, it is ultimately an outline of the testing project
in which product features categorized and prioritized.

In DevTest, the feature list is articulated as a hierarchical tree
structure that both organizes test cases and represents the
product to be tested. DevTest transforms the information
that previously captured in static lists into a dynamic
structure called a test library that helps testing groups to
manage their testing project, improve team efficiency, and
find bugs.

Test Case Organization

The TechExcel DevSuite of applications conceptualizes the
product under development as a fully designed product
that is articulated, managed, and communicated in DevTest
project structures prior to its actual implementation—
product features define the structure that is used to
organize and manage the implementation and testing of
those features.

The DevTest test library is sometimes called the “functional
tree” because it organizes test cases by product functions.
The tree structure enables the testing group to visualize the
entire application and understand the relationship between
every area under development. Every product feature may
be represented by a unique branch and contain multiple
subfolders representing feature subfunctions. Every dialog
box, command, report, error message, menu option, and so
on may be represented by a subfolder in the test library.

The test library defines the scope of the project, shows the
relationship between product features, and manages the
test templates that will be used to test those features.

5 TechExcel DevTest

In DevTest, each test case is displayed in the client as a form
through which testers may track and record test results.
Test cases typically consist of a test procedure, the expected
outcome of that procedure, the prerequisite state or steps
for the test, and other information that the QA team may
wish to track. DevTest features a fully customizable graphical
user interface (GUI) that enables QA organizations to
identify the data they wish to track and to standardize the
look-and-feel of test cases. QA organizations may add any
number of custom fields to record and track testing data.

Test templates enable testing organizations to control the
distribution of test cases and to implement a standardized
look-and-feel for all test cases. Testing organizations may
define their own approval process for all test templates
that ensure that only those test template that have been
approved may be used in test cycles.

Test case standardization ensures that test results are
consistent from one group or test cycle to the next and that
the data collected from different tests may be compiled and
compared. The format of test procedures, expected results,
and data-entry controls is consistent across all test cases
enabling testers of work more intuitively and efficiently.

Test templates enable testing groups to preserve and recycle
their most creative and successful tests—it makes no sense
for these tests to be recreated from scratch with each new
test cycle, or change in platform.

Test Templates and Test Tasks

As we have seen, the test template tree structure—the
test library—both organizes test cases and articulates the
product under development—the designed product—and
all its features. Once the QA organization has created a
library of test cases for a specific product, both the tests and
the structure used to manage those tests may be used and
reused with each new release cycle.

In DevTest, all test cases are represented as test templates
and test tasks. The test library is a tool for organizing
and managing reusable test templates that may be used
to create test cases that are applicable to many different
platforms and environments.

Using test templates and test tasks enables testing teams
to define and manage standardized and reusable test cases
(test templates) and to track the performance of program
features against that test (test tasks) in many different
environments.

•	 The test template tree manages the test library: The
template tree structure enables testing groups to
manage test templates in a hierarchical tree structure.
Test templates may be organized by product,
functional area, test type, or any other categories that
is useful to their business.

•	 The template tree defines project scope: The test
template tree may represent the product being
tested organized into functional areas and enables
testing groups to better provide full test coverage
of all product features. Organizing the test library by
product, feature, and function shows every area under
development. Project managers may use the test
template tree to estimate the resources needed for
the testing project.

•	 The test template tree helps test designers to create
better tests: Representing the product enables testing
groups to visualize “the designed product” described
in the control documents, analyze its design, and
identify good tests for its feature. Understanding how
the program features work together enables testers
to develop test cases that are more likely to find bugs
and combine or eliminate redundant tests.

•	 The test template tree makes test templates
accessible: A library of tests is only useful if the test
cases are accessible. The template structure enables
project teams to define hierarchical structures for
organizing templates and making them accessible to
users.

•	 The test template tree shows all areas of development.
Testing groups may ensure that every feature is
properly tested and prioritize test coverage by
module, component, or feature. The test template tree
shows which functional areas have been tested and
which areas have not so that testing groups can make
sure that they don’t do duplicate work.

Test Case Definition and Standardization

DevTest enables organizations to define custom test cases
and enforce standardization through test templates. A test
template is a blueprint for creating test cases that may
be used to test product features and performance across
multiple builds, platforms, and environments. Test templates
are easily edited, copied, and duplicated. Changes in the
design or functionality of a product feature can be easily
accomodated.

6 TechExcel DevTest

•	 A test template is a blueprint for creating test cases
that may be used to test product features and
performance across multiple builds, platforms, and
environments.

•	 Test tasks, on the other hand, are the instances of a
test template that are actually used to test a feature in
a test cycle. Every test task inherits its properties from
the test template that was used to create it.

What makes this all possible are environmental variables.
Test templates do not merely define test procedures and
expected results, they also define the environments in which
an application may be tested. An environmental variable
represents the various environmental factors that may
affect the performance of an application during a test cycle.
Environmental factors include things like system platforms,
hardware, network infrastructure, browsers types, and other
factors.

A single test template that includes one environmental
variable may be used to generate multiple test tasks – one
for each environmental variable value – or, if it includes
many environmental variables – one test task for each
permutation of environmental variable values. For example,
the web browser environmental variable may represent
three environmental variable values: Internet Explorer,
Firefox, and Safari. A test template that includes the web
browser environmental variable may be used to generate
three test tasks: a Internet Explorer test task, a Firefox test
task, and a Safari test task.

Scheduling
and Assigning
Testing

DevTest simplifies the management, assignment, and
scheduling of test cycles by organizing testing in distinct
release cycles and test cycles. This two-tiered approach
simplifies test management by leveraging the power of test
templates and environmental variables to create test cycles
for different environments and to provide instant access to
summary statistics.

In DevTest, all test planning – the definition of the scope and
objectives—is managed in release cycles. A release cycle
defines the scope and objectives of a group of test cycles—
the test schedules, test templates, environments, and testing
teams that are applicable to the test cycles within that
release cycle.

DevTest test planning is managed in the planning tree, a
hierarchical tree structure that represents products, releases,
and test cycles as a series of folders and subfolders. Just
as the test template tree organizes the test library (test
templates) by functional areas of development, the planning
tree organizes the test tasks based on those templates into
products, releases, and test cycles.

The DevTest two-tiered approach to test planning provides
the following benefits:

•	 View the test plan: The planning tree structure defines
and shows the relationships between products,
releases, and test cycles.

•	 View test depth: The planning tree structure shows
which functional areas have been tested and which
areas have not so that testing groups may see which
features have been tested and which areas have
not been tested so that they can avoid unnecessary
duplication of effort.

7 TechExcel DevTest

•	 Reports by release cycle: Testing groups may define and
run reports that enable them to view the effectiveness of
tests for every test cycle in a release cycle.

•	 Reports by test cycle: Testing groups may define and run
reports that enable them to view the effectiveness of
individual test cycles so that they may make adjustments
to subsequent test cycles within a release cycle.

The scope and depth of each test cycle is determined by
the applicable test templates, environments, and project
members that are defined at the release cycle level. Every
test cycle is the child of a release cycle and test cycle
options are limited to those options defined as applicable
to that release.

Planning Test Cycles

Test cycle planning is the act of choosing appropriate test
cases based on the results of previous test cycles within a
release cycle. Test cycle planning is an iterative process that
relies heavily on the results of previous test cycles within
the current release cycle. After the completion of each test
cycle, test planners may view summary reports and make
adjustments based on the results of those tests. Subsequent
test cycles may target features or environments that are
buggy or stress tests that successfully discover bugs.
Selecting appropriate test cases can be based on many
different factors including the stability of the program, the
results of previous test cycles, the availability of testing
groups, or the testing objectives defined in the parent
release cycle.

•	 Smoke tests: The first test cycle in a release cycle is
frequently an automated smoke test of basic product
functionality. If the product cannot pass a smoke test
there is no need to assign more complex test tasks to
the testing group until the basic bugs are fixed.

•	 Assign tasks for multiple environments: In each
test cycle testing groups may determine which
environments are tested in that cycle of testing. The
applicable test template is used to generate test
tasks specifically targeted at a selected group of
environments and are assigned to a specific tester or
testing group.

•	 Testing and retesting environments: Testing teams
may generate and regenerate test tasks for specific
environments in multiple test cycles. In each test cycle
the test tasks may be assigned to the same applicable
owners or to any other applicable owner or applicable
testing group.

•	 Advance coverage selection by query: At the
beginning of each test cycle the testing group may
run a query to see which tests passed and which tests
failed in previous test cycles. They may generate new
test tasks based on the same test template to retest
the feature.

•	 Meeting testing objectives: Testing groups may define
targets for each release cycle of testing including
targets for the number of tasks performed, the
number of product defects found, the effective time,
the ineffective time, and the total time spend testing.

Running Tests
and Tracking
Results

Test tasks give testers the information that they need to set
up and execute a test (the environment, test procedure, and
expected result), they enable the testing team to track and
analyze the results of the test, and they are foundation for
any bug reports based on that test.

DevTest reports enable testing teams to measure the
performance and efficiency of their testing teams, identify
their successes and failures, and to adjust test plans, test
cases, schedules, or test assignment accordingly.
DevTest summary reports show the number of test tasks
assigned, the number run, the percentage of the test tasks
that passed or failed, the time required to execute the tests
compared to the time estimated in the test plan. Summary
reports may be grouped by release or test cycle or by tester
within each test cycle.

Submitting Bug Reports

DevTest-DevTrack integration enables organizations define
processes for testing, fixing, and retesting product defects,
streamlines the submission of bug reports, and facilitates
the sharing of information between the development
and testing groups. Bugs discovered in DevTest may be
submitted to DevTrack development projects for resolution,
and the fixes may be retested in subsequent DevTest
regression testing.

8 TechExcel DevTest

The TechExcel DevTest-DevTrack solution enables testers to
submit bug reports to an integrated DevTrack project from
within the DevTest client. Testers do not need to switch back
and forth from DevTest and DevTrack to test and report
product defects and so can report bugs immediately while
they are still fresh in their minds. The quicker the tester
creates the bug report the less likely the tester is to forget
key details that will enable developers to reproduce the bug.

Organizations may streamline the bug reporting process
even further by mapping DevTest test task fields to DevTrack
development issue fields. Key information such as the test
procedure, the version of the software, and the environment
tested may be automatically copied from the test task to the
newly created development issue. Test case-bug report field
mapping reduces the amount of time that testers need to
spend typing, and enables them to get back to their primary
business of testing.

Linking Test Cases to Bug Reports

During the course of product testing, QA engineers may
encounter bugs that are responsible for malfunctions in
many different product features. Without the means to
effectively communicate with one another, QA engineers
may submit multiple identical bug reports to developers.
The submission and re-submission of what are essentially
identical bug reports only creates more work for the
developers.

In an integrated DevTest-DevTrack system, every DevTrack
development issue may be linked to one or more test
tasks using defect links. Defect links enable QA engineers
to associate development issues with the test tasks that
exposed them and enables testers and developers to share
information and work more effectively.

Moreover, every test task that is linked to a DevTrack
development issue provides testers with the opportunity
to draw from and add to the collected knowledge of the
entire testing team. Each tester may add key details to the
DevTrack issue enabling developers to understand the scope
of a bug and how that bug affects other product features.

Researching Existing Bug Reports

DevTest encourages QA engineers to identify and research
existing development issues before they submit new bug
reports to the DevTrack project. Researching existing
product defects provides the following benefits:

•	 Enables testers to familiarize themselves with
development issues and draw on the experience of
other QA engineers.

•	 Enables testers to fully understand product
features and expected behavior. Access to DevTrack
development issues enables QA engineers to read all
linked control documents— business requirements,
functional specifications, and technical specifications.

•	 Reduces the number of duplicate bugs reported to
the development team and enables them to work
more effectively. The submission and re-submission of
what are essentially identical bug reports only creates
more work for the developers.

In fact, DevTest enables administrators may define workflow
rules that require testers to search the knowledge base for
existing issues before they can submit a new bug report.

Sharing Experiences and Information

The DevTest knowledge-centric approach facilitates
communication between testing teams and developers so
that all project members may work together more efficiently
and effectively.

As noted previously, submitting a bug report from within
a DevTest project automatically creates a link between
the DevTrack development issue and the originating test
task. All test tasks notes are automatically copied over to
the development issue providing the developers with key
information that may enable them to identify the source of
the bug.

DevTest provides testing groups within many other tools for
communicating key information to developers.

•	 DevTest HTML memo field controls enable testers
to format the text of bug reports so that they can
describe the steps required to reproduce the bug
more effectively. Text formatting tools enable testers
to create bulleted and numbered lists, tables, headers,
and other formats that highlight key information.

9 TechExcel DevTest

•	 DevTest enables testers to attach files to bug reports
such as screen captures of error messages and typos,
keystroke captures, macros that generate the test
case, printouts, memory dumps, and documents that
define steps required to reproduce the bug in greater
detail than that found in the test case.

•	 The mapping of DevTest test task fields to DevTrack
development issue fields ensures that all key
information is copied into the bug report. Developers
need not question in which version or environment
the bug was discovered.

Conclusion

TechExcel DevTest is a test management solution that
enables test organizations to manage every stage of testing
life cycle—from test case design, to test execution, to test
analysis. DevTest provides testing groups with the tools they
need work more effectively and efficiently, hold down costs,
and to deliver higher quality products.

